Variational Convergence of Bifunctions: Motivating Applications
نویسندگان
چکیده
It’s shown that a number of variational problems can be cast as finding the maxinf-points (or minsup-points) of bivariate functions, coveniently abbreviated to bifunctions. These variational problems include: linear and nonlinear complementarity problems, fixed points, variational inequalities, inclusions, non-cooperative games, Walras and Nash equilibrium problems. One can then appeal to the theory of lopsided convergence for bifunctions to derive a variety of stability results for each one of these variational problems.
منابع مشابه
Monotone and Pseudo-monotone Equilibrium Problems in Hadamard Spaces
As a continuation of previous work of the first author with S. Ranjbar [26] on a special form of variational inequalities in Hadamard spaces, in this paper we study equilibrium problems in Hadamard spaces, which extend variational inequalities and many other problems in nonlinear analysis. In this paper, first we study the existence of solutions of equilibrium problems associated with pseudomon...
متن کاملVariational Principles for Monotone and Maximal Bifunctions
We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces. As applications, we give an existence result of saddle point for convex-concave function and solve an approximate inclusion governed by a maximal monotone operator.
متن کاملOn Equilibrium Problems Involving Strongly Pseudomonotone Bifunctions
We study equilibrium problems with strongly pseudomonotone bifunctions in real Hilbert spaces. We show the existence of a unique solution. We then propose a generalized strongly convergent projection method for equilibrium problems with strongly pseudomonotone bifunctions. The proposed method uses only one projection without requiring Lipschitz continuity. Application to variational inequalitie...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملStrong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014